If the coefficients of xr−1,xr and xr+1 in the binomial expansion of (1+x)n are in AP, prove that
n2−n(4r+1)+4r2−2=0
We know that
(1+x)n=nC0+nC1x+nC2x2+⋯+nCr−1xr−1+nC1xr+nCr+1Xr+1+⋯
So, the coefficients of xr−1xr and xr+1 in the given expansion are nCr−1,nCr, and nCr+1 respectively.
It is given that nCnr−1′Cr,andnCr+1r+ 1 are in AP.∴2×nCr=nCr−1+nCr+1⇒nCr−1nCr+NCr+1nCr=2⇒n!(r−1)!.(n−r+1)!×(r!).(n−r)!n!+n!(r+1)!.(n−r+1)!×(r!).(n−r)!n!=2⇒r(n−r+1)+(n−r)r+1=2[∵(n−r+1)!=(n−r+1).{(n−r)!r!}=r.{(r−1)!}]⇒r(r+1)+(n−r)(n−r+1)=2(r+1)(r+1)(n−r+1)⇒n2−n(4r+1)+4r2=2,hence , n2−n(4r+1)+4r2−2=0