y=ax3+bx2+cx+5 ⋯(1)
⇒dydx=3ax2+2bx+c
Since given curve touches the x−axis at A(−2,0),
therefore A lies on (1) and (dydx)A=0
⇒−8a+4b−2c+5=0 ⋯(2)
and 12a−4b+c=0 ⋯(3)
Curve (1) cuts y−axis at B(0,5).
It is given (dydx)B=3
⇒c=3
For c=3, from (2) and (3), we have
a=−12,b=−34
∴2a−4b+c=−1+3+3=5