The correct option is C 1p+1q=2
x2+py2=1 ...(2)
qx2+y2=1 ...(3)
subtracting,
x2(1−q)+y2(p−1)=0
⇒x2y2=(p−1q−1) ...(1)
Differentiating eqn (2),
2x+2pydydx=0
dydx|2=−xpy
Differentiating eqn (3)
2qx+2ydydx=0
⇒dydx|3=−qxy
Condition for orthogonality,
−xpy,−qxy=−1⇒qx2py2=−1 ...(4)
from eq^n (1) and (4)
qp(p−1q−1)=−1
⇒qp−q=−[pq−p]
→qp−q=−pq+p
⇒2qp=p+q
⇒2=1p+1q