Given, PA = PB
⇒√(x−5)2+(y−1)2=√(x+1)2+(y−5)2
On squaring both sides, We get-
(x−5)2+(y−1)2=(x+1)2+(y−5)2
⇒x2+25−10x+y2+1−2y=x2+1+2x+y2+25−10y
⇒−10x−2y=2x−10y
⇒−10x−2x=−10y+2y
⇒12x=8y
⇒3x=2y
Hence Proved.