The correct option is D a+b=0
Let α be a common root of x2−ax+b=0 and x2+bx−a=0
∴α2−aα+b=0⋯(i)
and α2+bα−a=0⋯(ii)
Subtracting both (i) & (ii), we get:
(α2−aα+b)−(α2+bα−a)=0
⇒(a+b)−(a+b)α=0
⇒(a+b)(1−α)=0
∴a+b=0 and α=1
On putting α in equation α2−aα+b=0, we get
12−a.1+b=0⇒a−b=1
Hence, a+b=0 and a−b=1