When two quadraticsx2+Ax+B=0 and x2+Cx+D=0 have a common root, it’s x=D−BA−C.
Proof: Subtracting the quadratics yields the result.
So the common root of x2+bx+ac=0 and x2+cx+ab=0 is x=ab−acb−c=a.
Let’s call the other root of the first r and the other root of the second s.
x2+bx+ac=(x−r)(x−a) so equating coefficients ar=ac or r=c and b=−c−a or a=−(b+c)
x2+ax+ab=(x−s)(x−a) as=ab and a=−s−a. So s=b.
We have an equation with roots c and b, so it’s
0=(x−c)(x−b)=x2−(b+c)x+bc
We note from above a=−(b+c), and substituting yields
0=x2+ax+bc