If 1x1123051032x1-2=0, then the value of x is
0
23
54
-45
Explanation for the correct option
It is given that 1x1123051032x1-2=0
⇒1×1+x×0+1×01×2+x×5+1×31×3+x×1+1×2x1-2=0⇒15x+5x+5x1-2=0⇒1×x+5x+5×1+x+5×-2=0⇒x+5x+5-2x-10=0⇒4x-5=0⇒4x-5=0⇒x=54
Therefore, the value of x is 54.
Hence, option(C) is the correct option.
If k>1 and the determinant of the matrix A2 is k2, then |α|=
A=kkαα0αkα00k