If the line y=√3x cuts the curve x3+y3+3xy+5x2+3y3+4x+5y−1=0 at the points A,B,C. Then OA.OB.OC=
x3+y3+3xy+5x2+3y2+4x+5y−1=0
And y=√3
∴x3+3√3+3√3x+5x2+9+4x+5√3−1=0
x3+5x2(4+3√3)x+8√3+8=0
x1x2x3=−8(√3+1)
x1x2+x2x3+x1x3=(4+3√3)
x1+x2+x3=−5
∴OA⋅OB⋅OC
=√(x21+3)(x32)(x23+3)
=√(x21x22+3(x21+x22)+9)(x23+3)
=√(x1x2x3)2+3(x21+x23+x22x23)+9x23+3x21x22+9x21+9x22+27
=√64(4−2√3)+3(x21x22+x22x23+x21x23)+9(x21+x22+x23)+27
x21+x22+x23=(−5)2−2(4+3√3)
=25−86√3
17−6√3
&
x21x22+x22x23+x23x21=(4+3√3)2−2x1x2x3(x1+x2+x3)
=(43)+24√3−2(−5)(−8(√3+1))
=43+24√3−80√3−80
=−37−56√3
∴OA⋅OB⋅OC⋅=√256−128√3−101−168√3+153−56√3+27
=√336−350√3