The equations of the given lines are
x−12=y+13=z−14 and x−31=y−k2=z1
∴x1=1,y1=−1,z1=1,x2=3,y2=k,z2=0
l1=2,m1=3,n1=4,l2=1,m2=2,n2=1
Since these lines intersect each other , we get
∣∣
∣∣x2−x1y2−y1z2−z1l1m1n1l2m2n2∣∣
∣∣=0
∣∣
∣∣2k+1−1234121∣∣
∣∣=0
⇒ 2(3−8)−(k+1)(2−4)−1(4−3)=0
⇒ −10+2k+2−1=0
⇒ 2k=9 ⇒ k=92