If the lines x+q=0, y−2=0 and 3x+2y+5=0 are concurrent, then the value of q will be
1
2
3
5
The lines x+q=0, y−2=0 and 3x+2y+5=0 are concurrent.
∴ ∣∣ ∣∣10q01−2325∣∣ ∣∣=0
⇒ 1(5+4)−0+q(0−3)=0
⇒ 3q=9
⇒ q=3
The lines x+y=10,2x−y−6=0 and x+2y=k are concurrent if k=