If the normal’s at (xi, yi) where i=1,2,3,4 to the rectangular hyperbola xy=2 meet at the point (3, 4), then
x1+x2+x3+x4=3
y1+y2+y3+y4=4
x1x2x3x4=−4
y1 y2 y3 y4=−4
Any point on xy = 2 is P (√2t, √2t)
xy=2
⇒x⋅dydx+y⋅1=0
⇒dydx=−yx=−1t2
Normal at P is (y−√2t)=t2 (x−√2t)
Normal passes through (3,4)
∴√2t4−3t3+4t−√2=0
∑t1=3√2
∑t1t2=0
∑t1t2t3=−2√2
∑t1t2t3t4=−1