If the pth and qth terms of a G.P. are q and p respectively, show that (p+a)th term is (qppq)1p−q.
nth term of GP = arx−1
pth term = q=a.rp−1
qth term = p=a.rq−1
⇒qp=rp−q
⇒r=(qp)1p−q
⇒a=p(pq)1−qp−q
⇒p+qthterm=p(qp)1−qp−q(qp)p+q−1p−q
⇒P(qp)1−q+p+q−1p−q
⇒P(qp)pp−q
⇒qpp−qppp−q−1
⇒qpp−qppp−q
⇒(qppq)1p−q