If the pth,qth and rth terms of a G.P are positive numbers a,b and c respectively, then find the angle between the vectors loga3^i+logb3^j+logc3^k and (q−r)^i+(r−p)^j+(p−q)^k
A
π6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Cπ2 Accordingtoquestion.................pthterm:a=mnp−1suppose:firstterm=mcommonratioofG.P=nb=mnq−1c=mnr−1firstvector:⇒3logaˆi+3logbˆj+3logcˆk→x=3(logm+(p−1)logn)ˆi+3(logm+(q−1)logn)ˆj+3(logm+(r−1)logn)ˆkand,→y=(q−r)ˆi+(r−p)ˆj+(p−q)ˆkdotprodut:→x.→y=3(logm.q−r)+3logn[(p−1)(q−r)]+3(logm.r−p)+3logn[(q−1)(r−p)]++3(logm.p−q)+3logn[(r−1)(p−q)]=3logm(q−r+r−p+p−q)+3logn[(p−1)(q−r)+(q−1)(r−p)+(r−1)(p−q)]=3logm(q−r+r−p+p−q)+3logn[pq−pr−q+r+qr−qp−r+p+rp−rq−p+q]=3logm(0)+3logn[0]=0+0=0∴→x.→y=0→x.→y=|x||y|cosθcosθ=0∴θ=π2so,thatthecorrectoptionisD.