Given: ap=x and aq=y
We know that,
an=a+(n−1)d
ap=a+(p−1)d
⇒x=a+(p−1)d...(i)
now,
aq=a+(q−1)d
⇒y=a+(q−1)d...(ii)
From equation. (i) and (ii), we get
x−(p−1)d=y−(q−1)d
⇒x−y=(p−1)d−(q−1)d
⇒x−y=d[p−1−q+1]
⇒x−y=d[p−q]
⇒d=x−yp−q...(iii)
Adding Eq (i) and (ii), we get
x+y=2a+(p−1)+(q−1)d
⇒x+y=2a+d[p+q−1−1]
⇒x+y=2a+d(p+q−1)−d
⇒x+y+d=2a+(p+q−1)d...(iv)
We know that,
Sn=n2[2a+(n−1)d]
⇒Sp+q=p+q2[2a+(p+q−1)d]
⇒Sp+q=p+q2[x+y+d] [using(iv)]
⇒Sp+q=p+q2[x+y+x−yp−q [using(iii)]
Hence Proved