If the roots of x3+px2+qx+r=0 are in G.P find the relation between p,q,r
Let the roots be a/t, a and at.
Product of the roots = (a/t)(a)(at)=(a/t)(a)(at)= a3=−ra3=−r
Sum of the roots = a[1/t+1+t]=−pa[1/t+1+t]=−p => [1/t+1+t]=−p/a[1/t+1+t]=−p/a
Coefficient of x = sum of combinations of 2 roots = a(a/t)+a(at)+at(a/t)=a(a/t)+a(at)+at(a/t)= a2[1/t+t+1]=qa2[1/t+t+1]=q
=> a2(−p/a)=qa2(−p/a)=q => −ap=q−ap=q => a=−q/pa=−q/p
=>a3=−q3/p3=−ra3=−q3/p3=−r
=> q3=rp3 q3=rp3