Given, sum of first m terms of an A.P. is n.
∴m2[2a+(m−1)d]=n
⇒2am+m(m−1)d=2n .........(1)
Also, sum of first n terms is m.
∴n2[2a+(n−1)d]=n
⇒2an+n(n−1)d=2m .........(2)
Subtracting (2) from (1),
⇒2a(m−n)+[(m2−n2)−(m−n)d]=−2(m−n)
⇒2a(m−n)+[(m−n)(m+n)−(m−n)d]=−2(m−n)
⇒2a+(m+n−1)d=−2
⇒m+n2[2a+(m+n−1)d]=−2×m+n2=−(m+n)
Hence, the sum of its first (m+n) terms is −(m+n).