Given that,
Sum of A.P. is
Sn=3n2+5n
⇒Sn=n(3n+5)
⇒Sn=2n2(3n+5)
⇒Sn=n2(6n+10)
⇒Sn=n2(10+6n)
⇒Sn=n2(10+6n+6−6)(addingandsubtracting6)
⇒Sn=n2(16+6n−6)
⇒Sn=n2[16+6(n−1)]
⇒Sn=n2[2×8+(n−1)6]
Comparing that Sn=n2[2a+(n−1)d]
Then, first term a=8 and common difference d=6
Hence, this is the answer.