wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the sum of p,q & r terms of A.P. is a, b,& c respectively then prove ap(qr)+bq(rp)+cr(pq)=0

Open in App
Solution

Given 9 p =a A = first term

a=P2[2A+(p1)D]

Given|ar|γ,sq=b

b=q2[2A+(q1)D]

c=r2[2A+(r1)D]

Nowap(qr)=(12(p1)D+A)(qr)....(1)

bq(rp)=(12(q1)D+A)(rp)

cr(pq)=(12(r1)D+A)(pq)

Adding (1) , ( 2) and (3) , we get

LHS=ap(qr)+bq(rp)+cr(pq)

12D[(p1)(qr)+(q1)(rp)+(r1)(pq)]+12A[qr+rp+pq]

12D[pqprq+rqpr+p+rprtp+q]+A(D)

12D(0)+0=0=RHS


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sum of n Terms of an AP
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon