Given, 40C0+40C4+40C8+⋯+40C40=238+2a
(1+x)40+(1−x)40=2[40C0+40C2x2+40C4x4 +⋯+40C40x40] ...(1)
Put x=1 in equation (1)
239=40C0+40C2+40C4+⋯+40C40 ...(2)
Put x=i (i=√−1) in equation (2)
12[(1+i)40+(1−i)40]=40C0−40C2+40C4−⋯+40C40 ...(3)
Add equation (2) and (3), we get
239+12×(√2)40[(eiπ/4)40+(e−iπ/4)40]=2[40C0+40C4+40C8+⋯+40C40]
⇒239+219(2)=2[40C0+40C4+40C8+⋯+40C40]
⇒238+219=40C0+40C4+40C8+⋯+40C40
⇒219(219+1)=40C0+40C4+40C8+⋯+40C40