If the sum ∑∞k−11(k+2)√k+k√k+2=√a+√b√c where a,b,cϵN and lie in [1, 15], then a+b+c equals to
11
Let Tk=(k+2)√k−k√k+2k(k+2)2−k2(k+2)
=(k+2)√k−k√k+22k(k+2)=12[1√k−1√k+2]
∴T1=12[1√1−1√3]
T2=12[1√2−1√4]
T3=12[1√3−1√5] and so on
∴ As k→∞, sum = 12[1+1√2]=1+√22√2
=√1+√2√8
⇒a+b+c=11