Given that,
ax+ay−z=0
bx−y+bz=0
−x+cy+cz=0 has non trivial solution
⇒Δ=0
⇒∣∣
∣∣aa−1b−1b−1cc∣∣
∣∣=0
Applying C1→C1−C3;C2→C2−C3
⇒∣∣
∣
∣∣a+1a+1−10−(1+b)b−(1+c)0c∣∣
∣
∣∣=0
⇒−(a+1)(b+1)c−(1+c)[(a+1)b−(b+1)]=0
⇒(c+1)(b+1)=(a+1)(b+1)c+(a+1)(c+1)b
On dividing both sides by (a+1)(b+1)(c+1), we have
1a+1=cc+1+bb+1
⇒1a+1=1−1c+1+1−1b+1
⇒11+a+11+b+11+c=2