wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the tangent at θ on the ellipse x2/a2+y2/b2=1 meets the auxiliary circle at two point which subtended a right angle at
the centre, then e2(2 cos2θ)=


A
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
-1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 1
We know that distance of any point on the ellipse from the foci of ellipse is given by,
d=a2±cxa

Refer the figure. Let coordinates of point P are P(acosθ,bsinθ)

AF2=a2+c(acosθ)a
AF2=a2+accosθa
AF2=a+c.cosθ

We know that, e=ca
c=ae

AF2=a+aecosθ

Similarly, AF1=aaecosθ
By distance formula, F1F2=2c

Now, AF12+AF22=F1F22
(aaecosθ)2+(a+aecosθ)2=(2c)2
a22a2ecosθ+a2e2cos2θ+a2+2a2ecosθ+a2e2cos2θ=4c2
2a2+2a2e2cos2θ=4c2
2a2(1+e2cos2θ)=4c2

We know that for an ellipse, c2=a2b2
a2(1+e2cos2θ)=2(a2b2)
a2(1+e2cos2θ)=2a22b2
a2+a2e2cos2θ=2a22b2
a2a2e2cos2θ=2b2
a2(1e2cos2θ)=2b2
1e2cos2θ=2b2a2
e2cos2θ=12b2a2 (1)

Now, e=ca
e2=c2a2
e2=a2b2a2
e2=1b2a2
b2a2=1e2

From equation (1), we get,
e2cos2θ=12(1e2)
e2cos2θ=12+2e2
e2cos2θ=1+2e2
2e2e2cos2θ=1
e2(2cos2θ)=1

Thus, answer is option (A)

1940943_1036964_ans_3909972113f44606b79f25e5b4596b55.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Representation-Hyperbola
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon