Equation of tangent at (1,−2) to the circle x2+y2=5, is
T=0⇒x(1)+y(−2)−5=0⇒x−2y−5=0
Above line touches the circle x2+y2−8x+6y+20=0 at P(α,β).
Centre of the circle is C=(4,−3)
⇒P(α,β) is the foot of perpendicular from centre to the tangent x−2y−5=0
⇒α−41=β+3−2=−(4+6−5)12+(−2)2⇒α=3, β=−1∴α2+β2=10