The correct option is A f1g=fg1
C1(−g,−f) and r1=√g2+f2
C2(−g1,−f1) and r2=√g12+f12
Since, circles touch each other
C1C2=r1+r2
√(g−g1)2+(f−f1)2=√g2+f2+√g21+f12
⇒g2+g12−2gg1+f2+f12−2ff1=g2+f2+g21+f12+2√g2+f2√g21+f12
⇒−2(gg1+ff1)=2√g2g12+f2f12+g2f12+f2g12
⇒g2g12+f2f12+2gg1ff1=g2g12+f2f12+g2f12+f2g12
⇒g2f12+f2g12−2gg1ff1=0
⇒gf1−g1f=0