The correct option is C △1−△=0
Given : △1=∣∣
∣∣abcxyzyzzxxy∣∣
∣∣
Taking transpose of above determinant, we get
⇒△1=∣∣
∣∣axzybyzxczxy∣∣
∣∣
Now multiplying R1 by x, R2 by y and R3, by z,we get
⇒△1=1xyz∣∣
∣
∣∣axx2xzybyy2xyzczz2xyz∣∣
∣
∣∣
Taking xyz common from C3, we get
⇒△1=xyzxyz∣∣
∣
∣∣axx21byy21czz21∣∣
∣
∣∣=△
⇒△1−△=0