If u=log(x3+y3+z3-3xyz), then ∂u∂x+∂u∂y+∂u∂z(x+y+z)=
0
1
2
3
Explanation for the correct answer:
u=log(x3+y3+z3-3xyz)
Differentiating u partially with x,y,z respectively we get
⇒∂u∂x=3x2-3yzx3+y3+z3-3xyz...(i)
⇒∂u∂y=3y2-3xzx3+y3+z3-3xyz...(ii)
⇒∂u∂z=3z2-3xyx3+y3+z3-3xyz...(iii)
Adding i,(ii),(iii) we get
⇒∂u∂x+∂u∂y+∂u∂z=3x2+3y2+3z2-3xy-3yz-3xzx3+y3+z3-3xyz
⇒∂u∂x+∂u∂y+∂u∂z=3x2+y2+z2-xy+yz+xzx3+y3+z3-3xyz
On factorizing x3+y3+z3-3xyz we get
x3+y3+z3-3xyz=x+y+zx2+y2+z2-xy+yz+xz...(iv)
From (iv) we can write
⇒ ∂u∂x+∂u∂y+∂u∂z=3x2+y2+z2-xy+yz+xzx+y+zx2+y2+z2-xy+yz+xz
⇒ ∂u∂x+∂u∂y+∂u∂z=3x+y+z
⇒∂u∂x+∂u∂y+∂u∂zx+y+z=3
Hence, the value of ∂u∂x+∂u∂y+∂u∂z(x+y+z) is 3, so option (D) is the correct answer.
If u=log(x3+y3+z3-3xyz), then (∂u/∂x+∂u/∂y+∂u/∂z)(x+y+z)=
If u=log(x3+y3+z3−3xyz) and (∂∂x+∂∂y+∂∂z)2u=−k(x+y+z)2