If u=sin−1[(x2+y2)15] then ∑x∂u∂x=
u=sin−1[(x2+y2)15]
sinu=(x2+y2)15 ..... (i)
Differentiating (i) partially w.r.t x, we get
cosu∂u∂x=152x(x2+y2)45..... (ii)
Differentiating (i) partially w.r.t y, we get
cosu∂u∂y=25y(x2+y2)45..... (iii)
From (ii) and (iii), we get
cosu(x∂u∂x+y∂u∂y)=25sinu
⇒x∂u∂x+y∂u∂y=25tanu