If u=sin-1(x2+y2)(x+y), then x∂u∂x+y∂u∂y is equal to
sinu
tanu
cosu
cotu
Explanation for the correct answer:
To find the value of x∂u∂x+y∂u∂y :
Given,
u=sin-1(x2+y2)(x+y)sinu=(x2+y2)(x+y)=x21+y2x2x1+yx=x1+y2x21+yx=xfyx
This is a homogeneous function of the degree1.
So by Euler’s theorem,
x∂z∂x+y∂z∂y=nz
Let, z=sinu
Then,
x∂z∂x+y∂z∂y=z⇒x∂∂xsinu+y∂∂ysinu=sinu⇒xcosu∂u∂x+ycosu∂u∂x=sinu[∵∂sinu∂x=cosu]⇒x∂u∂x+y∂u∂y=sinucosu⇒x∂u∂x+y∂u∂y=tanu
Hence the correct answer is option (B).
If u=log(x3+y3+z3-3xyz), then (∂u/∂x+∂u/∂y+∂u/∂z)(x+y+z)=