If u=sin-1yx, then ∂u∂x is equal to
-y(x2+y2)
x√(1–y2)
-y√(x2–y2)
-yx√(x2–y2)
Explanation for the correct answer:
Finding the value of ∂u∂x:
Given,
u=sin-1yx
Differentiate partially the above equation with respect to x.
∂u∂x=1√1-yx2×-yx2=x√(x2–y2)×-yx2=-y√(x2–y2)
Hence, the correct option is D.
If u=sin-1(x2+y2)(x+y), then x∂u∂x+y∂u∂y is equal to
If u=log(x3+y3+z3-3xyz), then (∂u/∂x+∂u/∂y+∂u/∂z)(x+y+z)=