wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a=3^i+2^j+2^k,b=^i+3^j^k,c=^i+^j+^k, then find the value of a×(b×c) and (a×b)×c

Open in App
Solution

a=3^i+2^j+2^k,b=^i+3^j^k,c=^i+^j+^k,
(a×b)×c=?
a×(b×c)=?
b×c=∣ ∣ ∣^i^j^k131111∣ ∣ ∣
=^i3111^j1111+^k1311
=^i(3+1)^j(1+1)+^k(13)=4^i4^k
a×(b×c)=∣ ∣ ∣^i^j^k322404∣ ∣ ∣
=^i2204^j3244+^k3240=^i(80)^j(128)+^k(08)
=8^i+20^j8^k
a×(b×c)=8^i+20^j8^k
a×b=∣ ∣ ∣^i^j^k322131∣ ∣ ∣
=^i2231^j3211+^k3213
=^i(26)^j(3+2)+^k(9+2)
=8^i+^j+11^k
(a×b)×c=∣ ∣ ∣^i^j^k8111111∣ ∣ ∣
=^i11111^j81111+^k8111
=^i(111)^j(811)+^k(81)
=10^i+19^j9^k

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon