wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=1/(2-√3),then the value of (x^3-2x^2-7x+5)

Open in App
Solution

dear student -4+2√3 is NOT simplified as -2(2+√3) -2*√3 ...but from -4+2√3 we took -2 outside..then we will get -2(2-√3)

this value -2(2-√3) is substituted in the expression (2 + √3) [-4 + 2√3] + 5...instaed of [-4 + 2√3]

= -2(2 + √3)(2 - √3) + 5

then we know that (a+b)(a-b)=a2-b2

similarly (2 + √3)(2 - √3) is in the form of (a+b)(a-b)..so we get (2 + √3)(2 - √3)=22-√32=4-3=1

then we get

-2(2 + √3)(2 - √3) + 5= -2(1) + 5

= 3

you can also solve this question in another way

x=\frac{1}{2-\sqrt{3}}
Multiply the numerator and denominator by the conjugate of the denominator
x=\frac{1}{2-\sqrt{3}}\cdot\frac{2+\sqrt{3}}{2+\sqrt{3}}=\frac{2+\sqrt{3}}{2^2-\sqrt{3}^2}=\frac{2+\sqrt{3}}{4-3}=2+\sqrt{3}
\implies\,x^2=(2+\sqrt{3})^2=4+4\sqrt{3}+3=7+4\sqrt{3}

Now consider the given expression and put the values of x and 22
x^3-2x^2-7x+5\\=x^3-7x-2x^2+5\\=x(x^2-7)-2x^2+5\\=(2+\sqrt{3})(7+4\sqrt{3}-7)-2(7+4\sqrt{3})+5\\=(2+\sqrt{3})(4\sqrt{3})-14-8\sqrt{3}+5\\=8\sqrt{3}+12-14-8\sqrt{3}+5\\=\boxed{3}


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon