The correct option is B Rational
Let α=(2+√5)13+(2+√5)13
So, (2+√5)13+(2−√5)13−α=0
Let a=(2+√5)13 and b=(2−√5)13 and c=−α⇒a+b+c=0
Now, a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab+bc−ca)
So, our choice of a,b,c; gives us;
(2+√5)+(2−√5)+(−α)3−(3)(2+√5)13(2−√5)13(−α)=0 (since a+b+c=0)
Hence, 4−α3−3(4−5)13(−α)=0
ie., 4−α3−3α=0; ie, α3+3α−4=0
But α=1 is only real root of x3+3x−4=0 (Given)
Hence, α=1
⇒(2+√5)13+(2−√5)13=α=1
so, (2+√5)13+(2−√5)13 is rational