If x=1-y1+y, then dydxis equal to
4x+12
4x-1x+13
x-1x+13
4x+13
Explanation for the correct option.
Given, x=1-y1+y.
Find the value of dydx.
Step 1: First we find the value of y.
x=1-y1+yx1+y=1-yx+xy=1-yxy+y=1-xy1+x=1-xy=1-x1+xy=1-x21+x2
Step 2: Now differentiate y with respect to x.
dydx=ddx1-x21+x2=1+x2×2×1-x×-1-1-x2×1+x×2×11+x4[∵ddx(f(x)g(x))=g(x)f'(x)-f(x)g'(x)[g(x)]2]=21+xx-11+x-x-11+x4=21+xx-11+11+x4=4x-1x+13
Hence, the correct option is B.