If x1, x2, . . . . x20 are in H.P and x1, 2, x20 are in G.P., then19∑r=1x1xr+1=
76
Clearly,1x1,1x2,....1x20will be in A.P. Hence,
1x2−1x1=1x3−1x2=....=1xr+1−1xr=....=λ(say)
⇒xr−xr+1xr.xr+1=λ
⇒xr.xr+1=−1λ(xr+1−xr)
⇒19∑r=1xr.xr+1=−1λ19∑r=1(xr+1−xr)
=−1λ(x20−x1)
Now,
1x20=1x1+19λ
⇒x1−x20x1x20=19λ
⇒19∑r=1xrxr+1=19x1x20=19×4=76
(∵x1.2x20are in G.P., then x1x20=4)