If x+1x=7 then find the value of x3+1x3
Given: x+1x=7……(i)
on Cubing both the sides, we get,
⇒(x+1x)3=73
⇒x3+1x3+3(x)(1x)(x+1x)=343 [∵(a+b)3=a3+b3+3ab(a+b)]
⇒x3+1x3+3(7)=343 [Using eq.(i)]
⇒x3+1x3=343−21
⇒x3+1x3=322
If x−1x=7, find the value of x3−1x3.