If x+1x=3, then x equal:
cosπ3+isinπ3
cosπ2+isinπ2
sinπ6+icosπ6
cosπ6+isinπ6
Explanation for the correct option.
x+1x=3⇒x2+1=3x⇒x2-3x+1=0
In the quadratic equation x2-3x+1=0, a=1,b=-3,andc=1
Roots of x2-3x+1=0, will be
=-b±b2-4ac2a=3±3-42=3±-12=3±i2
32+12i=cosπ6+isinπ6
Hence, option D is correct.
If x=2+√3 then (x+1x) equals
(a) −2√3 (b) 2 (c) 4 (d) 4−2√3
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.