The correct option is
C 1210Given: c,d are roots of x2−10ax−11b=0
∴c+d=10a ...... (1)
cd=−11b ...... (2)
Now (1)×c and using equation (2) we get,
c2−10ac−11b=0.......(3)
Also, a,b are roots of x2−10cx−11d=0
a+b=10c.... (4)
ab=−11d .... (5)
Multiplying the equation(4) by a and using the 5th equation we get,
a2−10ac−11d=0.......(6)
Now from the above equations we have,
a+b+c+d=10(a+c)⇒b+d=9(a+c) ..... (7)
abcd=121bd
∴ac=121
Now, eq(3)−eq.(6)⇒(c2−a2)−11(b−d)=0
c2−a2=11(b−d)
eq.(1)+eq.(2)⇒a2+c2−20ac−11(b+d)=0
Using the identity (a+b)2=a2+b2+2ab and eq(7) in the above eq. we get,
(a+c)2−22ac−99(a+c)=0
(a+c)2−99(a+c)−2662=0 [∵ac=121]
(a+c)2−(121−22)(a+c)−121×22=0
(a+c)2−121(a+c)+22(a+c)−121×22=0
(a+c)(a+c−121)+22(a+c−121)=0
(a+c+22)(a+c−121)=0
∴a+c=121
a+b+c+d=10(a+c)
∴a+b+c+d=1210