If x2+5=2x−4cos(a+bx) where a,b∈(0,5) is satisfied for alteast one real x, then the minimum value of a+bx is
π
x2+5=2x−4cos(a+bx)
x2+5−2x=2x−4cos(a+bx)−2x
x2−2x+5=−4cos(a+bx)
x2−2x+1+4=−4cos(a+bx)
x2−2x+1+4+4cos(a+bx)=−4cos(a+bx)+4cos(a+bx)
(x−1)2+4(1+cos(a+bx))=0
∴x−1=0 & cos(a+bx)+1=0
∴x=1 & cos(a+bx)=−1
∴ Minimum value of a+bx=π (∵cosπ=−1)