The correct option is C [2,4)
Given: [x]2−5[x]+6=0
Let [x]=t
⇒t2−5t+6=0
⇒t2−(3+2)t+6=0
⇒t2−3t−2t+6=0
⇒t(t−3)−2(t−2)=0
Either t=2 or t=3
For t=2⇒[x]=2
⇒[x]≤x<[x]+1
⇒2≤x<2+1
⇒2≤x<3
⇒x∈[2,3)
For t=3⇒[x]=3
⇒[x]≤x<[x]+1
⇒3≤x<3+1
⇒3≤x<4
⇒x∈[3,4)
∴x∈[2,3)∪[3,4)
⇒x∈[2,4)