x2+6xy+y2=10
Differentiating w.r.t x we get
2x+6(xdydx+y)+2ydydx=0
⇒2x+6xdydx+6y+2ydydx=0
⇒2x+(6x+2y)dydx+6y=0
⇒dydx=−2x+6y6x+2y
⇒dydx=−x+3y3x+y
Differentiating w.r.t x we get
⇒d2ydx2=−⎡⎢
⎢
⎢⎣(3x+y)ddx(x+3y)−(x+3y)ddx(3x+y)(3x+y)2⎤⎥
⎥
⎥⎦
⇒d2ydx2=−⎡⎢
⎢
⎢
⎢⎣(3x+y)(1+3dydx)−(x+3y)(3+dydx)(3x+y)2⎤⎥
⎥
⎥
⎥⎦
⇒d2ydx2=−⎡⎢
⎢
⎢
⎢⎣(3x+y)(1−3×x+3y3x+y)−(x+3y)(3−x+3y3x+y)(3x+y)2⎤⎥
⎥
⎥
⎥⎦
⇒d2ydx2=−⎡⎢
⎢
⎢
⎢⎣(3x+y)(3x+y−3x−9y3x+y)−(x+3y)(9x+3y−x−3y3x+y)(3x+y)2⎤⎥
⎥
⎥
⎥⎦
⇒d2ydx2=−⎡⎢
⎢
⎢
⎢⎣(3x+y)(−8y3x+y)−(x+3y)(8x3x+y)(3x+y)2⎤⎥
⎥
⎥
⎥⎦
⇒d2ydx2=8⎡⎢
⎢
⎢
⎢
⎢
⎢⎣(y(3x+y)3x+y)+(x(x+3y)3x+y)(3x+y)2⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
⇒d2ydx2=8[3xy+y2+x2+3xy(3x+y)3]
⇒d2ydx2=8[x2+y2+6xy(3x+y)3]
∴d2ydx2=8×10(3x+y)3 using x2+6xy+y2=10
∴d2ydx2=80(3x+y)3
Hence proved.