wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

if x2+6xy+y2=10, show that d2ydx2=80(3x+y)3

Open in App
Solution

x2+6xy+y2=10
Differentiating w.r.t x we get
2x+6(xdydx+y)+2ydydx=0
2x+6xdydx+6y+2ydydx=0
2x+(6x+2y)dydx+6y=0
dydx=2x+6y6x+2y
dydx=x+3y3x+y
Differentiating w.r.t x we get
d2ydx2=⎢ ⎢ ⎢(3x+y)ddx(x+3y)(x+3y)ddx(3x+y)(3x+y)2⎥ ⎥ ⎥
d2ydx2=⎢ ⎢ ⎢ ⎢(3x+y)(1+3dydx)(x+3y)(3+dydx)(3x+y)2⎥ ⎥ ⎥ ⎥
d2ydx2=⎢ ⎢ ⎢ ⎢(3x+y)(13×x+3y3x+y)(x+3y)(3x+3y3x+y)(3x+y)2⎥ ⎥ ⎥ ⎥
d2ydx2=⎢ ⎢ ⎢ ⎢(3x+y)(3x+y3x9y3x+y)(x+3y)(9x+3yx3y3x+y)(3x+y)2⎥ ⎥ ⎥ ⎥
d2ydx2=⎢ ⎢ ⎢ ⎢(3x+y)(8y3x+y)(x+3y)(8x3x+y)(3x+y)2⎥ ⎥ ⎥ ⎥
d2ydx2=8⎢ ⎢ ⎢ ⎢ ⎢ ⎢(y(3x+y)3x+y)+(x(x+3y)3x+y)(3x+y)2⎥ ⎥ ⎥ ⎥ ⎥ ⎥
d2ydx2=8[3xy+y2+x2+3xy(3x+y)3]
d2ydx2=8[x2+y2+6xy(3x+y)3]
d2ydx2=8×10(3x+y)3 using x2+6xy+y2=10
d2ydx2=80(3x+y)3
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon