Ifx=213+223,Show that x3−6x=6.
x=213+223Cubing both sides,x3=(213+223)3=2+22+3×213×223(213+223)⇒x3=2+4+3×213+23×x⇒x3=6+3×2×x⇒x3=6x+6⇒∴x3−6x=6 Hence Proved.
If x = 2+223+213, then x3−6x2+6x =