We have,
x2+xy+3y2=1 …….. (1)
On differentiating both sides w.r.t x, we get
2x+y+xdydx+6ydydx=0
(x+6y)dydx=−(2x+y)
dydx=−(2x+y)(x+6y) …….. (2)
On differentiating both sides w.r.t x, we get
d2ydx2=d(−(2x+y)(x+6y))dx
d2ydx2=−[(d(2x+y)dx)(x+6y)−(2x+y)(d(x+6y)dx)](x+6y)2 ⎡⎢ ⎢ ⎢⎣∵d(uv)dx=vdudx−udvdxv2⎤⎥ ⎥ ⎥⎦
d2ydx2=−[2x+12y+(x+6y)dydx−(2x+12xdydx+y+6ydydx)](x+6y)2
d2ydx2=−[2x+12y+(x+6y)dydx−(2x+y+(6y+12x)dydx)](x+6y)2
d2ydx2=−[2x+12y+(x+6y)dydx−2x−y−6(2x+y)dydx](x+6y)2
d2ydx2=−[2x+12y−2x−y+(x+6y−12x−6y)dydx](x+6y)2
d2ydx2=−(11y−11xdydx)(x+6y)2
d2ydx2=11(xdydx−y)(x+6y)2
From equation (2),
d2ydx2=11(x(−(2x+y)(x+6y))−y)(x+6y)2
d2ydx2=−11(x(2x+y)(x+6y)+y)(x+6y)2
d2ydx2=−11(x(2x+y)+y(x+6y))(x+6y)3
(x+6y)3d2ydx2=−11(2x2+xy+xy+6y2)
(x+6y)3d2ydx2=−11(2x2+2xy+6y2)
(x+6y)3d2ydx2=−22(x2+xy+3y2)
From equation (1),
(x+6y)3d2ydx2=−22×1
(x+6y)3d2ydx2=−22
Hence, this is the answer.