If x2=y+z,y2=z+x,z2=x+y, then the value of 1x+1+1y+1+1z+1 is
x2=y+z,y2=x+z,z2=x+y⟶111+x+11+y+11+z=1+x−x1+x+1+y−y1+y+1+z−z1+z=1−x1+x+1y1+y+1−z1+z=3−(x2x+x2+y2y+y2+z2z+z2)
( Multiplied numerator and denominator byx,y and z in the 3 terms )
=3−(y+zx+y+z+z+xx+y+z+x+yx+y+z)=3−2(x+y+z)(x+y+z)=3−2=1