If x3+1 is a factor of ax2+bx3+cx2+dx+e, a, b, c, d, e ϵRanda≠0, then the real root of ax4+bx3+cx2+dx+e=0 other than -1 is
Given ax4+bx3+cx2+dx+e=0
⇒ax4+bx3+cx2+dx+e=(x3+1)×a×(x−α)
⇒x=−1,−ω,−ω2
Sum of roots =−ba=−1−ω−ω2+α
α=−ba
Products of roots ea=(−1)(−ω)(−ω2)α
=−α
α=−ea
Sum of product of roots taken 3 at a time
−da=(−1)(−ω)(−ω2)+(−ω)(−ω2)(α)+(−1)(−ω)(α)+(−ω2)(α)(−1)
=(−1)+α+αω+αω2
−1+α(1+ω+ω2)=−1
da=1
d=a
α=−ea,−ed
Sum of product of roots taken 2 at a time
ca=(−1)(−ω)+(−1)(−ω2)+(−1)(α)+(−ω)(−ω2)+(−ω)(α)+(−ω2)(α)
=ω+ω2−α+1−ωα−ω2α
(−1)−α(1+ω+ω2)+1
=0
c=0