The correct option is C a+b+c=3π
x4+3cos(ax2+bx+c)=2(x2−2)
⇒x4−2x2+1=−3(1+cos(ax2+bx+c))
⇒(x2−1)2=−3(1+cos(ax2+bx+c)]
LHS ≥0 but RHS ≤0
Hence, the equation is true only if LHS = RHS =0
⇒x±1 and cos(ax2+bx+c)=−1
When x=1,
cos(a+b+c)=−1
⇒a+b+c=(2n+1)π, n∈Z
Since a,b,c∈(2,5),
a+b+c∈(6,15) and a−b+c∈(−1,8)
Hence, a+b+c=3π
When x=−1,
cos(a−b+c)=−1
⇒a−b+c=(2m+1)π, m∈Z
Hence, a−b+c=π