The correct option is D 3230+1344√3169
Given that, x=4+√3
x2=(4+√3)2=42+(√3)2+2×4×√3 (Using (a+b)2=a2+b2+2ab)
x2=16+3+8√3=19+8√3
1x2=1(4+√3)2=(14+√3)2
On rationalising, we get,
1x2=(4−√316−3)2=(4−√313)2
=(19−8√3169)
x2+1x2=19+8√3+19−8√3169
=3211+1352√3+19−8√3169
=3230+1344√3169