wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (xa)2+(yb)2=c2 prove that [1+(dydx)2]32d2ydx2=constant

Open in App
Solution

We have,

(xa)2+(yb)2=c2 …… (1)

Differentiation this equation with respect to x and we get,

ddx(xa)2+ddx(yb)2=ddxc2

2(xa)+2(yb)dydx=0

dydx=(xa)(yb)

Again differentiation and we get,

d2ydx2=[(yb)ddx(xa)(xa)ddx(yb)](yb)2

d2ydx2=[(yb)(xa)dydx](yb)2

d2ydx2=(xa)dydx(yb)(yb)2

Put the value of dydx and we get,

d2ydx2=(xa)(xa)(yb)(yb)(yb)2

d2ydx2=(xa)2(yb)2(yb)(yb)2

d2ydx2=(xa)2(yb)2(yb)(yb)2

d2ydx2=(xa)2(yb)2(yb)3 ……. (2)

Put the value of dydx and d2ydx2 in LHS and we get,

[1+(dydx)2]32d2ydx2

=1+((xa)(yb))232(xa)2(yb)2(yb)3

=[(yb)2+(xa)2(yb)2]32(xa)2(yb)2(yb)3

=[(yb)2+(xa)2]3(yb)3(xa)2(yb)2(yb)3

=[(yb)2+(xa)2]3(yb)2+(xa)2

=[(yb)2+(xa)2]2 by equation (1)

=(c2)2=c4=constant

Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon