We have,
(x−a)2+(y−b)2=c2 …… (1)
Differentiation this equation with respect to x and we get,
ddx(x−a)2+ddx(y−b)2=ddxc2
⇒2(x−a)+2(y−b)dydx=0
⇒dydx=−(x−a)(y−b)
Again differentiation and we get,
d2ydx2=−[(y−b)ddx(x−a)−(x−a)ddx(y−b)](y−b)2
d2ydx2=−[(y−b)−(x−a)dydx](y−b)2
d2ydx2=(x−a)dydx−(y−b)(y−b)2
Put the value of dydx and we get,
d2ydx2=(x−a)−(x−a)(y−b)−(y−b)(y−b)2
d2ydx2=−(x−a)2−(y−b)2(y−b)(y−b)2
d2ydx2=−(x−a)2−(y−b)2(y−b)(y−b)2
d2ydx2=−(x−a)2−(y−b)2(y−b)3 ……. (2)
Put the value of dydx and d2ydx2 in LHS and we get,
[1+(dydx)2]32d2ydx2
=⎡⎣1+(−(x−a)(y−b))2⎤⎦32−(x−a)2−(y−b)2(y−b)3
=[(y−b)2+(x−a)2(y−b)2]32−(x−a)2−(y−b)2(y−b)3
=[(y−b)2+(x−a)2]3(y−b)3−(x−a)2−(y−b)2(y−b)3
=−[(y−b)2+(x−a)2]3(y−b)2+(x−a)2
=−[(y−b)2+(x−a)2]2 by equation (1)
=−(c2)2=−c4=constant
Hence proved.