If x = a cos A - b sin A and y = b cos A + a sin A, prove that x2 + y2 = a2 + b2 .
x2 + y2 = (aCos A- bSinA)2 + (bCosA + aSinA)2
= a2Cos2A + b2Sin2A - 2aCosAbSinA + b2Cos2A + a2Sin2A+2aSinbCos
= a2(Cos2 A+ Sin2 A) + b2 ( Cos2 A+ Sin2A) + 2ab ( SinACosA - SinACosA)
Cos2 A+ Sin2 A = 1
SinACosA - SinACos A= 0
= (a2 x 1) + (b2 x 1) + 0
= a2 + b2