We are given, x=a(cost+logtant2)
and y=asint
Let differentiate x & y wrt t, we get,
dydt=acost
& dxdt=a⎡⎢
⎢
⎢⎣(−sint)+1tant2.sec2t2.12⎤⎥
⎥
⎥⎦
( by chain rule)
dxdt=a⎡⎢
⎢
⎢⎣−sint+1cost22sint2×1cos2t2⎤⎥
⎥
⎥⎦
=a⎡⎢
⎢
⎢⎣−sint+12sint2cost2⎤⎥
⎥
⎥⎦
=a[−sint+1sint]
dxdt=a(1−sin2tsint=acos2tsint
now, dydx=dydt×dtdx=acostacos2t×sint=tant
again differentiate dydx wrt x.
ddx(dydx)=d2ydx2=sec2t.dtdx
d2ydx2=sec2t×sintacos2t
[d2ydx2]t=π3=sec2(π/3).sin(π/3)a.cos2(π/3)=(2)2.(√3/2)a.(1/2)2
[d2ydx2]t=π3=8√3a