wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=a(cost+logtant2) and y=asint, then find d2ydx2 at t=π3.

Open in App
Solution

We are given, x=a(cost+logtant2)
and y=asint
Let differentiate x & y wrt t, we get,
dydt=acost
& dxdt=a⎢ ⎢ ⎢(sint)+1tant2.sec2t2.12⎥ ⎥ ⎥
( by chain rule)
dxdt=a⎢ ⎢ ⎢sint+1cost22sint2×1cos2t2⎥ ⎥ ⎥
=a⎢ ⎢ ⎢sint+12sint2cost2⎥ ⎥ ⎥
=a[sint+1sint]
dxdt=a(1sin2tsint=acos2tsint
now, dydx=dydt×dtdx=acostacos2t×sint=tant
again differentiate dydx wrt x.
ddx(dydx)=d2ydx2=sec2t.dtdx
d2ydx2=sec2t×sintacos2t
[d2ydx2]t=π3=sec2(π/3).sin(π/3)a.cos2(π/3)=(2)2.(3/2)a.(1/2)2
[d2ydx2]t=π3=83a

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Animal Tissues
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon