x=a(cost+logtant2),y=asint
Calculating dydt
y=asint
dydt=ddt(asint)
dydt=acost ------- ( 1 )
Now calculating dxdt
x=a(cost+logtant2)
dxdt=ddta(cost+logtant2)
dxdt=a⎛⎜
⎜⎝−sint+1tant2.d(tant2)dt⎞⎟
⎟⎠
dxdt=a⎛⎜
⎜⎝−sint+1tant2.(sec2t2).d(t2)dt⎞⎟
⎟⎠
dxdt=a⎛⎜
⎜⎝−sint+1tant2.sec2(t2).12⎞⎟
⎟⎠
dxdt=a⎛⎜
⎜⎝−sint+cott2.1cos2t2.12⎞⎟
⎟⎠
dxdt=a⎛⎜
⎜⎝−sint+cost2sint2.1cos2t2.12⎞⎟
⎟⎠
dxdt=a⎛⎜
⎜⎝−sint+1sint2cost2.12⎞⎟
⎟⎠
dxdt=a⎛⎜
⎜⎝−sint+12sint2cost2⎞⎟
⎟⎠
dxdt=a(−sint+1sint)
dxdt=a(−sin2t+1sint)
dxdt=a(1−sin2tsint)
dxdt=a(cos2tsint) ----( 2 )
From ( 1 ) and ( 2 )
dydx=dydtdxdt
dydx=acostacos2tsint
dydx=acost×sintacos2t
dydx=acost.sintacost.cost
⇒ dydx=sintcost
⇒ dydx=tant
∴ d2ydx2=ddt(dtdx×dydx)
⇒ d2ydx2=ddt(sintacos2t×tant)
⇒ d2ydx2=1addt(sin2tcos3t)
d2ydx2=cos3t.2sint.cost−sin2t.3cos2t.(−sint)a(cos3t)2
d2ydx2=cost(sin2t.cos2t+3sin2t)acos6t
d2ydx2=(sin2t.cos2t+3sin2t)acos5t
Now substitude t=n3
d2ydx2=(sin2n3.cos2n3+3sin2n3)acos5n3