wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=a(cost+logtant2)andy=asint, then find d2ydx2 at t=n3

Open in App
Solution

x=a(cost+logtant2),y=asint
Calculating dydt
y=asint
dydt=ddt(asint)
dydt=acost ------- ( 1 )
Now calculating dxdt
x=a(cost+logtant2)

dxdt=ddta(cost+logtant2)

dxdt=a⎜ ⎜sint+1tant2.d(tant2)dt⎟ ⎟

dxdt=a⎜ ⎜sint+1tant2.(sec2t2).d(t2)dt⎟ ⎟

dxdt=a⎜ ⎜sint+1tant2.sec2(t2).12⎟ ⎟

dxdt=a⎜ ⎜sint+cott2.1cos2t2.12⎟ ⎟

dxdt=a⎜ ⎜sint+cost2sint2.1cos2t2.12⎟ ⎟
dxdt=a⎜ ⎜sint+1sint2cost2.12⎟ ⎟

dxdt=a⎜ ⎜sint+12sint2cost2⎟ ⎟

dxdt=a(sint+1sint)

dxdt=a(sin2t+1sint)

dxdt=a(1sin2tsint)

dxdt=a(cos2tsint) ----( 2 )
From ( 1 ) and ( 2 )
dydx=dydtdxdt

dydx=acostacos2tsint

dydx=acost×sintacos2t

dydx=acost.sintacost.cost

dydx=sintcost

dydx=tant
d2ydx2=ddt(dtdx×dydx)

d2ydx2=ddt(sintacos2t×tant)

d2ydx2=1addt(sin2tcos3t)

d2ydx2=cos3t.2sint.costsin2t.3cos2t.(sint)a(cos3t)2

d2ydx2=cost(sin2t.cos2t+3sin2t)acos6t

d2ydx2=(sin2t.cos2t+3sin2t)acos5t

Now substitude t=n3

d2ydx2=(sin2n3.cos2n3+3sin2n3)acos5n3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon